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Abstract. We consider the polarisation of synchrotron radiation by a Dirac particle. By 
making use of the Stokes parameters, we are able to pick out the linearly polarised 
components from the circularly polarised component. Particular attention is paid to the 
case of large energy. Since we are dealing with a Dirac particle, interest is also shown in 
the role of the spin in the pol&ation phenomenon. 

1. Introduction 

Since Schott obtained his formula, considerable interest has been aroused in the 
theoretical examination of the problem of radiation by a relativistic particle circulating 
in a uniform magnetic field. This interest seemed particularly strong during the 1940’s 
as a result of the construction of particle accelerators to ever increasing energies. But 
notwithstanding the many and varied volumes of literature on the subject, interest in 
synchrotron radiation does not seem to abate. Since the 1970’s rapid expansions have 
been taking place in synchrotron radiation facilities with an intensity that seems even 
to surpass that of the 1940’s. This current upsurge of interest is due to the recognition 
that synchrotron radiation can be used as a source for the study of photo-nuclear 
reactions and indeed in the physics of high energy generally. It has been suggested 
that unique experimental conditions in photo-nuclear research would result from it 
because of certain properties of synchrotron radiation. These properties include the 
very high intensity, a high degree of polarisation and the extremely good collimation 
of the radiation. 

It may be noted in this regard that most of the existing theoretical works on the 
subject concentrate on the angular and spectral distribution of the radiation. There 
is no corresponding interest shown in a study of the polarisation properties of the 
radiation particularly by the quantum treatment. Information on this aspect is prin- 
cipally experimental. Such a study is of some interest in view of a possible relation 
between the spin state of a charged particle and the polarisation state of its radiation. 
This is what we intend to examine in this article. 

Since the significance of Dirac’s equation lies in the fact that it treats the spin as 
an intrinsic property of the electron, it provides a natural starting point for our 
examination. Any solution should unfold these properties naturally. Thus, although 
numerous solutions of this equation exist, and indeed for the case of a particle moving 
in a magnetic field, we intend to obtain a fresh solution here for the sake of consistency 
and continuity. Such an approach will enable us to emphasise those points which we 
have to use in our subsequent analysis. Further, for the purpose of studying the 
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polarisation properties of the radiation, we shall apply the general methods of describ- 
ing the polarisation properties of a bundle of light as demonstrated by Stokes (see 
e.g. McMaster 1954). Finally, in view of current trends, we shall devote our analysis 
to the case of large energies and possibly also high magnetic fields. 

2. Solution of Dirac’s equation 

If we represent the wavefunction in the form of a column matrix 

/ * I \  

then Dirac’s equation for a stationary particle gives the following system of equations: 

(E  -W ’Mz - c P d 3  - cPZ+4 = 0, 

(E + / - L c ~ ) * ~  - cP+*i - cP,& = 0. 

2 (E  - p c  )*I - cP-41-  ~ P , 4 3  = 0, 

( E  + pc2)43  - cP-42 - CPzII/l = 0, 

Here p is the rest mass of the particle, and P ,  = Px f iP, where P = P - ( e / c ) A  is the 
momentum of the particle in the presence of the applied magnetic field. 

Eliminating and G3 from the first of the above equations we obtain for (L4 

[ C ~ ( P + P - + P ~ ) - ( E ’ - / - L ~ C ~ ) ] ~ ~ = O .  (1) 

It can be shown that the component satisfies this same equation. We may therefore 
seek solutions in which the components 4z,+b4 differ only by a constant factor of 
proportionality. 

For the components +b3 we similarly obtain 

[CZ(P-P+ + P : )  - (E2  -p2c4)]*1,3 = 0, (2) 
in view of which we may impose the further requirement that GI and also differ 
only by a constant factor. We shall see later (equation (9)) that a complete set of 
helicity eigensolutions can be obtained under this double restriction. 

If we direct the magnetic field along the z axis then 

A x =--I 2YX, A ,  = fxX ,  A ,  =0, 

where X is the applied magnetic field. In obtaining (1) and (2), we had assumed that 
the magnetic field is directed along the z axis. We shall consider the case of an 
electron, i.e. e = -eo, such that eo > 0 and e’ > 0. 

Equations (1) and (2) become 

[ A  + k 2  - (e,X/h2c)(L, - h)  - (e2&9’/4h2c2)(~’ + y * ) ] ~ + + ~ , ~  = 0, 

[A+k’ - (eoX/h’c ) (L ,  + h ) - ( e 2 ~ z / 4 h 2 ~ 2 ) ( ~ 2 + y 2 ] ~ 1 , 3  = 0. 

Here k 2  = K Z  - k; and E = hcK is the energy of the particle, hko = pc and A is the 
Laplacian operator. Further, L ,  = x p ,  - y p x  is the component of angular momentum 
in the direction of the z axis. In cylindrical coordinates, these equations take the form 

[ : : ( r : ) + 7 G + z + k  1 a’ a2 -2a 
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[ 5 (r i) + 7 1 g a2 + g+ a2 k - 2a(  f $ + 1) - a 2r2]ljll,3 = 0 

where a = eoR/2hc. 
In subsequent calculations, we shall ignore the z component, 
We seek for solutions in the following forms: 

i ( m + l b /  J G ) R  !,I. for (1) we write 42,4  = (e 9 

for ( 2 )  ljl1,3 = (e'"*/JG)R[:. 

we then obtain expressions for the radial parts thus: 

( - + - - - ~ + k  d2 1 d m 2  - 2 a ( m + l ) - a  2 2  r )R1,3=0. 
dr2 r dr r 

( 3 )  

( 4 )  

Next we make the following substitutions in succession. 

R = X/r 'I2, X2,4 = r exp(-iar2)U2,4, x1,3 = y m + l I 2  exp(- iar2)~1,3,  

where U is a function of r only. We then obtain the following equations for the U :  

m + 3 / 2  

m + 9  

m +t  

[ -$+ 2( y - ar) $+ k 2  - 4 a  (m + 1) 

1 [ -$+ 2( T - a r )  $+ k 2  - 4 a  (m + 1) U1.3 = 0. 

Finally the substitution p = a r 2  takes us to the form 

[pd2/dp2 + (m + 2 - p)d/dp + L2 - (m + l)]U2,4 = 0, 

[pd2/dp2+(m + l -p )d /dp+<- (m +l)]U1.3=0. 

These two equations can be combined into one: 

[pd2/dp2+ (mi +i+ 1 -p)d/dp + L2 - (m + l)]U, = 0 
1 where for E = 2 , 4 ;  m j = m  +; and when E = 1, 3;  m j = m  -5. 

Further 

L 2 = k 2 / 4 a  = ( K 2 - k i ) / 4 a .  

Equation (9, as is well known, is satisfied by the generalised Laguerre polynomial, 
since m is an integer. Thus we have 

U, = , ~~+1 '2 (a r2 )  

where n = 0, 1 , 2 , 3  . . . is the radial quantum number. The requirement that the 
Laguerre function be a polynomial leads to the energy levels. Thus 

E " , ~  = c [ C L C ~ + ~ C L ~ G ( ~ + ~ + ~ ) ] ~ ' ~ ,  G = eoR/pc. ( 6 )  

Since the Dirac equation also describes the spin properties of the particle, the function 
$ depends not only on the space coordinates, but also on the 'spin coordinates'. The 
normalisation must therefore make provision for this. Thus for the time-independent 
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part of the function we must have 

9, = {exp[i(mj + h I / G ) b , R ,  ( r )  

where 6 represents the spin amplitude and is independent of the spatial coordinates. 
It satisfies the condition 

This condition is however not enough to determine the four unknown quantities. We 
therefore make use of the fact that 1,4 is also an eigenfunction of the operator of the 
projection of the spin on the particle momentum, namely 

(U * P)tJ = Akst+b. 

Since this operator commutes with the Hamiltonian of Dirac’s equation, with the help 
of Dirac’s equation, the latter equation can be transformed to the form 

( p l E / c  +ip2Fc)$ = hks& (8) 

Equation (8) gives us a system of four linear equations in the b’s, but only two of 
them are linearly independent. By substituting the solutions into the original equations 
we are able to get the following values for the b’s: 

s (1 + ko/K)’ / ’  1 Bf 
l b4 

1 = :[is (1 + k d K  )”‘] 

, i( 1 - ko/K)’” , 
2 ( l - k o / K ) ’ / ’  ’ 

From the solutions of these equations we also find that s = il and K 2  = k 2 +  k i  where 
Ak is the momentum of the particle. Thus for the wavefunction we obtain 

where I,,,,,(z) = c,z“’~’ exp(- $ z ) L r ( z )  and z = a?. The c,, are normalising constants. 

3. Study of the polarisation 

For the purpose of studying the polarisation properties of the radiation, we need to 
evaluate the instantaneous power of radiation. According to Sokolov et af (1968) 
this is given by 

d W  = (e2c /27r)  d3x S(K,,,, --K,,S,~; - x )  f .  (10) 

where 
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with 

(YO = Gj e-'""a*, d3r 

being the matrix elements of the transition probability from the state I+% to the state 
ILi. Note that cLi = ILi(r, cp). 

Further, a is the amplitude of the wavefunction of the photon. 
We split a into two orthogonal components, namely 

a = afef + agg 

where 
ef  = cos xp2 +e" sin xp, 

e; e, = 0. 

e, = sin xpz - eiy cos xp3. (11) 

We note that 

Further, af and a, are the operator parts of a and satisfy the commutation relations 

aisais- = cSSsr 

The unit vectors Pz, 03 are defined as 

(s, s' = 2,3;  i = f ,  g) .  

pz = (Xg A k ) / [ l -  (Xo  ' k)2]"2, p3 = XO 17 pZ. 
tc0 = (sin 8 cos c p ' ,  sin 8 sin c p ' ,  cos 8) is a unit vector in the direction of the photon 
momentum vector and k is a unit vector along the z axis. 

It is easy to see that the vectors Pz, p3, x o  form a right-handed orthonomal set 
and satisfy the condition of transversality of the radiation. 

x ,  y are real parameters which determine the character of the polarisation. In 
general, (6 )  describes an elliptical polarisation. But x = 7/2 ,  y = 0 represents a plane 
polarisation and x = 7/4, y = 7 / 2  corresponds to a circular polarisation, 

4. Evaluation of the energy of radiation 

We note that x - r = xr sin 8 sin(cp' - cp + 7/2) ,  the angle cp is in the coordinate space 
of the particle whereas cp' is in the momentum space of the photon. 

We make use of the result 
CD 

elxs'"@ = C ~ ~ ( x )  elA@ 
A.;--ao 

where J A ( x )  is the Bessel function of the first kind. 

amplitude, 

uoflz=L[mr dr[02Tdcp [i(m, -m:)cp-ix . r ] f , a p 2 f ,  

Then if f represents the normalised radial wavefunction including the spin 

2 7  0 

where $ = cp' -  712, A = m - m'. 
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A similar calculation gives 
r a  

+ ( I L , m  (r)In,m(r) - I L , m + l  (r)I“,,,,+l(r)) sin eIJi(ry) eiA’. (13) 

The summation sign has been dropped (with respect to i). In integrating (12) and 
(13) with respect to cp we made use of the fact that 

2- [ 2 T  exp[i(mj -m\ - A ) q ]  dq = SA.m,-m; 
27T 0 

which implies that 

A = m - m ’ * I ,  A = m -m’.  
Also 

4 0 :  =( l -ko/K‘) ( l+ko/K) ,  4 0 ;  = (1  -ko/K)(l + k o / K ’ ) .  

Further, we indicate quantities of the final states by means of a prime; thus K‘.  Those 
without primes refer to the initial state. 

The role of helicity flip can be seen in (12) and (13) in the factor sDl+s‘D2; the 
matrix element for helicity flip (s’ = -s) evidently vanishes in the limit of zero photon 
energy. 

In order to integrate (12) and (13) with respect to r we make use of formula 
7.422(2) from Gradshteyn and Ryzhik (1971), 

lom x*+ ’  exp( -ax2)L~(ax2)L; : -u (ax2)Jh  ( x y )  dx 

= (- 1)”+”’(2a )-* - l y  A exp(-y2/4a )~: -“ ‘+“(y  2/4a ) ~ k - ~ - n + ~ ’  ( Y  2/4a ). 
Noting that A = mj -mi we also use the relation 

L Z ( Z )  = ( - z ) -mL; :m(z ) .  

After some calculation, substituting (12), (13) into ( 1 1 )  and then (10) we obtain for 
the nth quantum number 

d W =  dWi 
i = f , n  

where 

dW,=ae2C(SD1+s’02)2X1 sine de 

+ (::) sin 2x sin y(1,,,~-1(2) - ~ , , , “ + ~ ( f )  

x [ ( I n , v - l ( f )  +In,v+~(f)) cos e + 2 1 n , , ( f )  sin el 1 (14) 

with f = ( x 2  sin2 8 / 4 a ) .  The upper line refers to the component d Wf and the lower 
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line to d W,. Further, in obtaining (14) we had summed with respect to all final states 
n’ and in this regard used the result 

c 1:s.” (2) = 1 
(see Sokolov et a1 1968, Neumann 1953). We also put n f 1 = n since n is much 
larger than unity. 

Note on (14). From the 8 function in (10) we get the equation for the conservation 
of energy 

Kn,m, -K,,j,m; - X  = 0. 

Solving this and making use of (6), we obtain 
2 x -2xK+2av=O 

where 
v = n - n ’ + m - d ’ .  

Thus x -  appearing in (14) is the root of the above equation for which K 2%. The 
other root corresponding to the case K < x  is rejected on physical grounds. Thus 

X -  = K [l- (1 - 2av/K 2)1’2], 

i.e. 
w - =  (E/h)[ l - ( l  -~C~~;V/E’) ’ /~] .  

Expanding (15) and making h + 0, we get 

w,I = ( p c 2 / E ) 4 v  

which agrees with the relativistic classical value expressing the fact that the frequency 
of radiation is harmonic to the frequency of rotation of the particle. 

From (15), it is obvious that the frequency has real values if 

1 >pc2hGv/E2,  

i.e. if 
v s E2/eo%fhc. 

vmax = E2/eoXhc.  
Hence 

Further, taking note of the selection rule for the magnetic quantum number, i.e. 
m -m’= 0, 71 ,  we see that v,,,=n -n’. For a given n, v = 0 when n = n‘ and attains 
its maximum when n’ = 0. Thus 

umax = n = E2/eoXhc. (16) 

5. Analysis of the polarisation 

For an analysis of the polarisation we now introduce the Stokes parameters. They 
are given by 
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which has been normalised so as to make 

In the present problem, the components are given by 

The component P1 corresponds to the degree of linearly (plane) polarised radiation. 
P2 gives the degree of linearly (plane) polarised component at an angle 77/4 to that 
of PI  and P3 represents a circularly polarised component. 

I / 

\ 

‘, 

K- 8 Irod l  

Figure 1. Graph showing degree of polarisation for the case of large quantum number 
(n ) .  Polar angle 8 in radians. PI linear polarisation; P3, circular polarisation. 

If IP 1 = 1,  we say that the radiation is totally polarised. If (PI < 1, it is partially 
polarised. It is easy to see from (17) that if 0 = 0 then P1 = 0 and P3 = 1 which means 
that radiation along the z axis is totally circularly polarised. On the other hand if 
0 = r / 2 ,  P1 = 1, and P3 = 0. In this case the radiation is totally linearly polarised. It 
is easy to see from (17) that, in general, 

lPI=(P:+P:+P:)”*= 1.  

Thus, synchrotron radiation by a Dirac particle is, generally speaking, totally polarised. 
This is qualitatively in agreement with the classical result (see Kukanov et ai 1971) 
and also with the experimental results (see Chrien et ai 1980, Lea 1978). 

Qualitatively, both the classical and the quantum treatments show that the radiation 
is totally polarised, and that the component P2=0. However, we may note the 
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following differences between the two results. The classical expressions contain Bessel 
functions, whereas the quantum result contains Laguerre polynomials. In the limit 
as h+0,  however, the Laguerre polynomials go over into the Bessel functions and 
the classical results are recovered, except for the appearance of an additional term in 
the expression for the matrix element proportional to 2 sin r31n,”(z) (see (14)). The 
result of this is that the quantum expression for P1 is decreased, whereas that of P3 
is increased. In order to explain this situation, we note that the classical expressions 
are for a spinless particle, whereas the quantum treatment takes account of the spin. 
We may infer from this that the effect of the spin is to reduce the linearly polarised 
component, and increase the circularly polarised component. The state of polarisation 
as a whole, however, remains unchanged. 

For a more qualitative picture of the polarisation we shall consider the case for 
large n for which we use the asymptotic expression for the Laguerre polynomial. We 
note first of all that 

n = E2/eoZhc .  

Taking E = 20 GeV, Sf = lo6 G, we find that 

n = 1 0 ’ ~  

which is quite a large number. An asymptotic form of the Laguerre polynomial is 
therefore justified. Thus we have 

cos (2JG-an /2  - 77/41. x / 2  -a/2-1/4 a/2-1/4 LE(x)=-e  x n 
J, 

Ignoring the normalisation constant, we have 

I,,,“ - 1 ( z  1 - I n , “  + 1 ( Z  = [n 

I “ , . - l ( z ) + I n , u + l ( Z ) = [ n  (’+1)/2/J;;(nx)”4~ sin[2JG- 

I ~ , ~ ( Z )  = [n(y+1”2/J~(nx)1J4]  cos(2JG-  vn/2 - n/4)/&. 

Since lcos x 1 s 1, lsin X I  s 1 for large n,  we may reject (cos x)/n, (sin x)/n, in comparison 
with cos x, sin x. Hence, substituting the above expressions into the values for the P i ,  
and rejecting terms proportional to (cos x ) / n ,  we find that the Stokes parameters 
assume the very simple forms 

J?nx sin(2 JG - ur /2  - 7r/4)( 1 / n  + 1 ), 

- r/41(1/n - 11, 

p1 = (sin e ) / ( i  +cos2 e), P2 = 0 ,  p3 = (2 COS e ) / ( i  +cos2 e). (18) 

Again, as can be verified, 

I P 1 = (P: + P: + P:)’l2 = 1, 

indicating a totally polarised radiation. It is of interest to note that in this limit, the 
components of the polarisation vector are all independent of the energies, either of 
the particle, or of the photon. 

6. Conclusion 

In this article we examined the polarisation properties of synchrotron radiation by a 
Dirac particle. We first obtained a solution, to show that each component of the 
wavefunction is associated with either of two possible spin states. 
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We then obtained an expression for the instantaneous power of radiation. With 
the help of this and making use of the Stokes parameters, we were able to pick out 
the various components of the polarisation vector. 

We showed that for large quantum number, which corresponds to large energy, 
radiation is totally polarised. The analysis also indicates that synchrotron radiation is 
generally accompanied by helicity flip. The formula (14) indicates that although 
helicity flip occurs, it has no effect whatever on the polarisation of the radiation. 
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